Surname

Centre Number

First name(s)

wjec cbac

GCSE 3440UB0-1

TUESDAY, 17 MAY 2022 - MORNING

APPLIED SCIENCE (Single Award) UNIT 2: Science to Support our Lifestyles

HIGHER TIER

1 hour 30 minutes

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	11	
2.	8	
3.	12	
4.	9	
5.	7	
6.	11	
7.	11	
8.	6	
Total	75	

ADDITIONAL MATERIALS

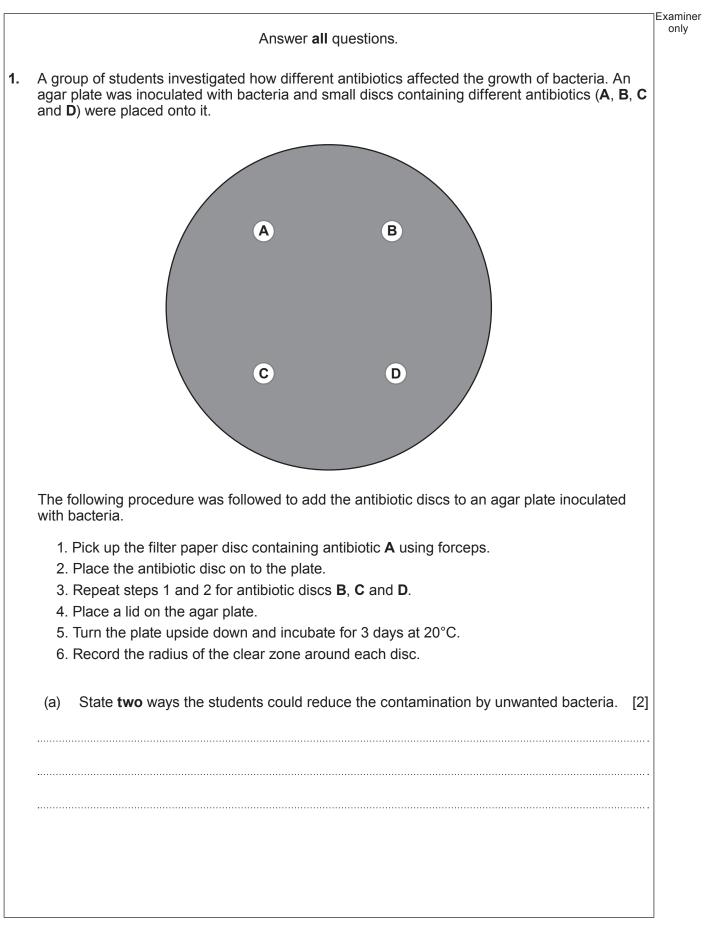
In addition to this paper you will require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

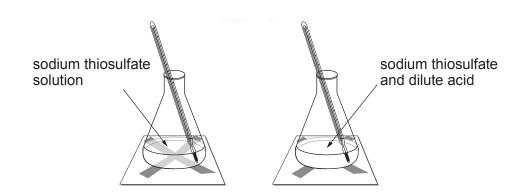
Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.


Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. Question 4(a) is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on page 16 of this examination paper.



		Antibiotic disc	Radius of clear zone (cm)	
	-	Α	1.2	
	-	В	0.7	
		С	1.4	
	-	D	0.2	
(i)	Explain	which antibiotic is le	east effective.	[2]
(ii)	Use the	equation		
		area	= 3.14 × radius ²	
	to calcu	ulate the area of the o	clear zone for antibiotic C to three si	gnificant figures. [3]
			area =	cm ²
(iii)	lt has b	een estimated that e	each 1 cm ² on this plate contains 50 C	000 bacteria.
		te how many bacteri t of the experiment.	a were present in the area cleared b	-
	ine star	t of the experiment.		[2]
	Dahart		number of bacteria =	
(iv)	Jeremy	says that antibiotic (c is twice as effective as antibiotic B c is four times as effective as antibio with Jeremy or Robert.	
.				

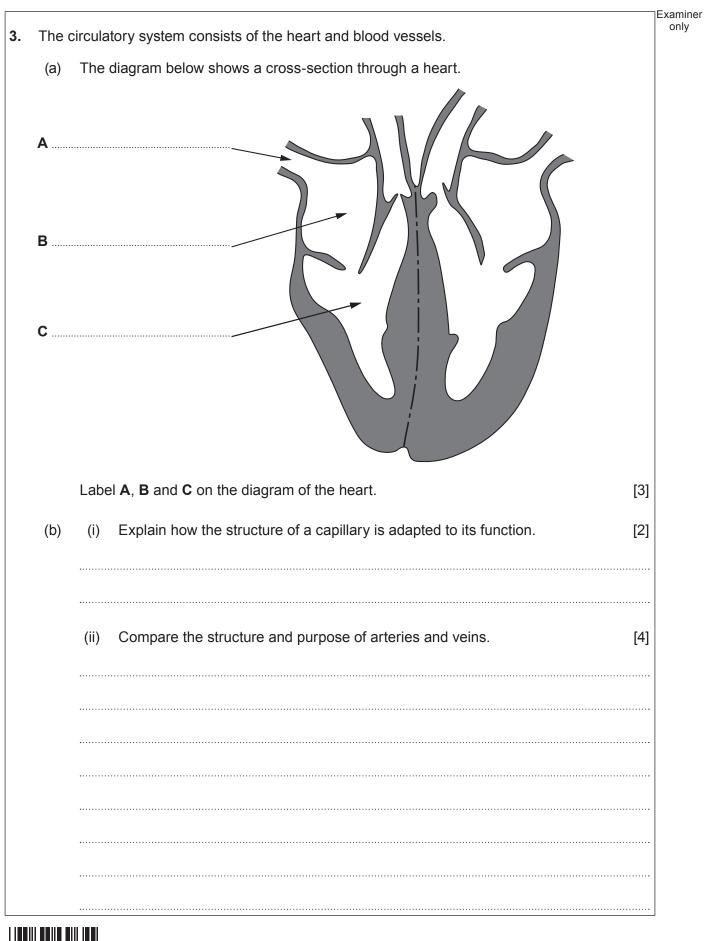
Examiner only 2. A student carried out an experiment to investigate how concentration affects the rate of a chemical reaction. When hydrochloric acid (HCI) reacts with sodium thiosulfate solution a precipitate of sulfur is formed that makes the solution go cloudy.

The student made different concentrations of hydrochloric acid by adding water to hydrochloric acid. These were then added to a sodium thiosulfate solution at 20 °C. The time for the cross to disappear was then measured.

The following results were obtained.

Volume of HCl (cm ³)	Volume of water (cm ³)	Time for cross to disappear (s)
25	0	2
20	5	9
15	10	37
10	15	75
5	20	153

((a)	State two variables that need to be controlled in this experiment.	[2]
		1	
		2	
((b)	Explain the results in terms of particles.	[3]
••••			


Explain, in terms of particles carried out at 5 °C.	what would happen to the results if the experiment was

Examiner only

[3]

(C)

(C)	Blood contains different types of cells. Describe how white blood cells defend the body against pathogens. [3]	Examiner only
·····		
••••••		
		12
		3440UB01

3440UB01 07

© WJEC CBAC Ltd.

(3440UB0-1)

(a)	Describe how blood glucose levels are normally controlled, and how this differs in a person with type 1 diabetes. [6 QEF	- รา
		,,
•••		
(h)	Responshore are experimenting with DNA in an attempt to produce the peressary	
(b)	Researchers are experimenting with DNA in an attempt to produce the necessary hormones to control blood glucose levels. Describe the structure of DNA.	3]
•••••		

only A study has been conducted into the effect of smoking on lung function. The lung function of 5. four different groups of people was measured: people who smoke people who did smoke but gave up at the age of 45 people who did smoke but gave up at the age of 65 people who have never smoked. The results of the study are shown in the graph below. 100 Never smoked Smokers 75 Lung Function (%) Stopped at 45 years 50 Suffer symptoms Stopped at 65 years 25 Disability Death 0 25 50 75 Age (a) John is 45 and is considering giving up smoking. Use the information in the graph to explain to John the benefits of giving up. [3] Bryn is 60 years old and has smoked since he was a teenager. He has recently (b) developed shortness of breath. By adding to the graph, show how his lung function would change if he gives up smoking. [2] Llinos says her grandmother smoked throughout her life and she died at 90, therefore (C) the study is not valid. Explain whether you agree with Llinos. [2] 7

Turn over.

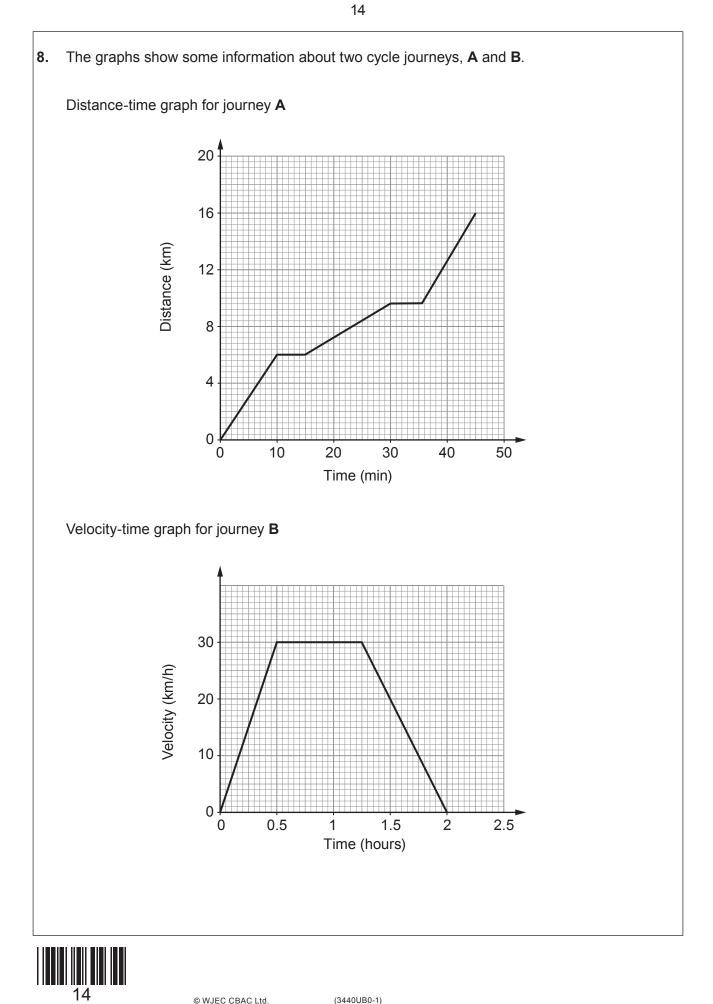
(3440UB0-1)

Examiner

(a) Fractures in adults can be either simple or compound.						
	(i)	State the difference between s	imple and	compound fractures. [1]]	
	(ii)	Calculate the approximate nun per year.	nber of fra	ctures that occur in patients 65 and over [2]	.]	
(b)	The	number of fractures per yea incidence of hip fractures with a	·			
200		Males	200	Females		
150) per year			
100			er 10000			
			Fractures per 10000 per y			
0	0 10) 20 30 40 50 60 70 80 Age		10 20 30 40 50 60 70 80 Age		

		11	
	(i)	Compare the incidence of hip fractures for males and females.	[2]
	 (ii)	There are approximately 6 million women in the UK aged between 65 and 80. Use the graph to calculate the approximate number of fractures that occur in women in this age range per year.	[4]
		number of fractures =	
(c)	Oste	oarthritis is another condition which can affect the hip joint. Explain how parthritis affects the hip joint so that replacement becomes necessary.	[2]
			1

(a)	(i)	State the nature and origin of a beta particle. [2
	(ii)	Give the decay equation for molybdenum-99 ($^{99}_{42}Mo$). [2
(b)	A sa	mple of technetium-99m containing 1.6×10^8 nuclei is injected into a patient.
	(i)	Calculate the number of nuclei remaining 24 hours later. [3
		number of nuclei =
	(ii)	The radiation from technetium-99m will be undetectable once its activity drops to 1/32 of its original value. Colin suggests that this will happen after 2 days. Explain whether you agree.
	······	


(c) State **two** reasons why molybdenum-99 is not suitable for use in medical imaging. [2]

13

11

TURN OVER FOR QUESTION 8

	15	_
The cyclist thought his r	nean speed for journey B was greater.	Exa o
Use the graphs and the	equations:	
	distance = speed × time	
	distance = area under velocity-time g	Jraph
to explain whether the c	yclist's conclusion was correct.	[6]
	END OF PAPER	
15	C CBAC Ltd. (3440UB0-1)	Turn over.

1 2 Coup 3 4 5 6 7 0 1 2 1 2 1 1 2 4 5 6 7 0 1 2 1 1 2 1 1 5 6 7 0 1		-	. o 🛱	. a 5.	_ _	r 4	5 0 to to		
2 Coup 3 4 5 6 Beyluttion 24 5 6 7		0	⁴ Ξ ^Ξ Ω						
2 THE PERIODIC TABLE F Group 3 4 5 Berylium Berylium Berylium Midden Mid		2		19 F Fluorine 9	35.5 CI Chlorine 17	80 Br 35	127 lodine 53	210 At Astatine 85	
2 THE PERIODIC TABLE Group 3 4 3 4 Berylium Hytrigen Magnesium 12 Berylium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 Magnesium 12 12 12 13 13 14 14 14 14 14 14 14 14 14 14		9		16 O Oxygen 8	32 Sulfur 16	79 Se 34	128 Te Tellurium 52	210 PO 84	
2 THE PERTODIC TABLE Bervilium Bervilium Magestium		Ŋ		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	
2 THE PERIODIC TABLE Group Berglium 9 9 9 9 9 9 9 9 9 9 9 9 9		4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82	
2 THE PERIODIC TABLI Bervilium 4 Magnesium Magnesiu		ო		11 B 5	27 Al 13	70 Ga Gallium 31	115 In 1ndium 49	204 TI Thallium 81	
2 Beryllium 9 8 8 8 8 8 8 8 8 8 8 8 8 8	щ					65 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80	
2 Beryllium 9 8 8 8 8 8 8 8 8 8 8 8 8 8	[ABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
2 Beryllium 9 8 8 8 8 8 8 8 8 8 8 8 8 8	DIC					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
2 Beryllium 9 8 8 8 8 8 8 8 8 8 8 8 8 8	RIO					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
2 Beryllium 9 8 8 8 8 8 8 8 8 8 8 8 8 8	EPE	dnc	e	1		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
9 Beryllium 9 Beryllium 9 Beryllium 9 Beryllium 24 Mg 8 Mg 24 Mg 24 Mg 24 Mg 24 Mg 24 Mg 24 Mg 25 Mg 23 20 26 Sr 23 20 20 21 22 21 22 22 23 91 40 137 139 40 138 179 40 137 139 40 138 179 40 137 139 55 138 179 40 138 179 40 138 179 40 138 179 40 137 138 138 179 55 137 138 138 179 57 138 179 50 138 179 50 138 179 57 138 179 57 <th>Ę</th> <th>Gro</th> <th>Hydrog</th> <td></td> <td></td> <td>55 Mn Manganese 25</td> <td>99 TC Technetium</td> <td>186 Re Rhenium 75</td> <td></td>	Ę	Gro	Hydrog			55 Mn Manganese 25	99 TC Technetium	186 Re Rhenium 75	
9 Be Be Beryllium9 Be Be Beryllium24 Mg Mg Magnesium24 Mg137 Strontium 38 57139 40 57 72 72 72200 21 22 5722 40 72226 57 57227 72 72226 57 57227 72227 88 89227									
9 Beryllium 9 Beryllium 9 Beryllium 9 Beryllium 9 Beryllium 9 Beryllium 124 Mgnesium 04 122 24 Mgnesium 04 122 24 Mgnesium 04 122 24 Magnesium 04 122 23 23 38 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88									
A Beryllium Magnesium Magnesium Magnesium Magnesium Magnesium Magnesium Magnesium Magnesium Barylliu						48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
						45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89
L Li ithium ithium ithium ithium assium		3		9 Be Beryllium	24 Mg 12 12	40 Ca Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88
		~		7 Li Lithium 3	23 Na Sodium	39 A Potassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Brancium 87

Ar Symbol Name Z atomic number