Surname

First name(s)

Centre Number

0

GCSE

3440UA0-1

WEDNESDAY, 15 JUNE 2022 – MORNING

APPLIED SCIENCE (Single Award) UNIT 1: Science in the Modern World

HIGHER TIER

1 hour 30 minutes

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	19					
2.	6					
3.	13					
4.	15					
5.	8					
6.	14					
Total	75					

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator, pencil and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** guestions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question $\mathbf{4}(a)(i)$ is a quality of extended response (QER) question where your writing skills will be assessed.

You are reminded to show all your workings. Credit is given for correct workings even when the final answer given is incorrect.

A Periodic Table is printed on page 20.

		2					
Answer all questions.							
1. Different to	Different techniques can be used to monitor the quality of water.						
(a) Goo	od river water qual	ity is needed to su	pport fish, vegetation, wetlan	ids and birds.			
The table below shows the results of tests carried out by students on two compounds, A and B , found in river water. The compounds were known to contain four of the following ions:							
• • • •	sulfate calcium carbonate sodium chloride potassium iodide						
	Test used to ide	ntify positive ion	oositive ion Test used to identify negative ion				
Compound	Test using solid	Result	Test using solution	Result			
А	Flame test	Lilac flame	Add dilute nitric acid followed by silver nitrate solution.	Yellow precipitate			
В	Flame test	Brick red flame	Add dilute hydrochloric acid. Bubble gas through limewater.	Fizzing and limewater turns milky			
Use	e the information in Compound A : Compound B :	the table above t	o identify compounds A and I	B. [4]			

aminer only

(3440UA0-1)

© WJEC CBAC Ltd.

Examiner only

> 3440UA01 03

(b) Colour test strips can also be used to identify pollutants in water. They can also provide other information.

Ideal water quality in swimming pools and hot tubs is essential to prevent harm to people using them.

The colour test strip below has been produced from a swimming pool water sample. It is alongside a key.

(c) Colorimetry is a method of determining the concentration of a substance in a solution by measuring the absorption of light. The instrument which is used to make these measurements is called a colorimeter. The diagram below shows how a colorimeter works.

Light is passed through a filter to select the most appropriate wavelength of light, some of which is then absorbed by the solution. The amount of light absorbed is measured and is called the absorbance.

A calibration graph using known concentrations of the tested solution is produced. The results of a calibration test using copper sulfate solutions of known concentrations are shown below.

Concentration (mol/dm ³)	Absorbance (units)
0.00	0.00
0.01	0.11
0.02	0.22
0.05	0.55
0.06	0.66
0.08	0.88

(i) Use the data to plot a graph on the grid opposite and draw a suitable line. [4](ii) Describe the relationship between absorbance and the concentration of the

solution. [2]

 (iii) A copper sulfate solution of unknown concentration was tested in the colorimeter and the absorbance was found to be 0.35 units. Use your graph to find the concentration of the solution.

concentration = mol/dm³

© WJEC CBAC Ltd.

The filter used in the colorimeter is chosen to select the band of wavelengths which are most strongly absorbed by the coloured solution. When testing copper sulfate solution a yellow filter is used. (iv)

Wavelength band (nm)	Colour of the solution	Colour of the filter
400–435	violet	yellowish-green
435–480	blue	yellow
500–560	green	purple
580–595	yellow	blue
595–610	orange/brown	greenish-blue
610–750	red	bluish-green

I.	lodine dissolved in potassium iodide solution is yellow at low concentration and brown at higher concentrations. Explain how you would change the	ons
	experiment to find the unknown concentration of iodine.	[3
•••••		
•••••		
•••••		
II.	Zinc sulfate solution is colourless. Explain whether the concentration of a	1
	Zinc suitale solution can be found by using coloured litters.	١٢
•••••		
•••••		

Turn over.

3. Energy is expensive so it is important that it is not wasted in homes.

(a) The table below shows the amount of heat energy lost through different parts of a house and how it depends on the temperature in the house. It shows how these values change as improvements are made. The values show how much energy is lost per **minute**.

	1		1			
Part of house	Type of insulationCost of insulationEnergy lost per mi temperat			per minute at the nperature (J/minu	inute at the given house ture (J/minute)	
	(£)	(£)	20°C	21°C	22°C	
	none		39900	43800	47 600	
Cavity wans	foam filled	1200	12700	14 200	17 300	
windowo	single glazed	1400	27 700	29600	34800	
windows	double glazed	2600	18800	21 500	27900	
loft	none		49700	58 100	61 300	
	fibre glass	700	14 300	15600	17 500	

Use the data in the table to answer the following questions.

(i) An advertising campaign claims that homeowners can save money and help the environment if they reduce the temperature inside their homes by 1°C. Explain whether you agree with these claims. [3]

 (ii) A homeowner spends money on installing loft insulation and cavity wall insulation. Previously, neither were present. Using the figures in the table, find the heat energy savings achieved each **second**, after these changes are made, if the homeowner maintains a temperature of 21°C in the home. [3]

			-
	(iii)	Use your answer to part (a)(ii) to calculate the power saving to the home in kW. [1]	only
		power saving = kW	
(b)	A diff centr Befor After	ferent homeowner insulates their house at a cost of £2400. They use a 32kW gas ral heating system. re the insulation was installed the gas system operated for 4 hours a day. wards, it operated for 3.5 hours a day.	
	(i)	Use the equations:	
		units used (kWh) = power (kW) \times time (h)	
		$cost = units used \times cost per unit$	
		to calculate the money saved each week on the gas bill in pence after installing the insulation. [4]	
		(1 unit of gas costs 12 p)	
			34400A01
		saving each week = p	
	(ii)	Using the weekly saving you have found in part (b)(i), calculate how many weeks it would take to pay back the cost of the insulation for this house. [2]	
		payback time = weeks	13

3440UA01 09

(a)	(i)	Describe the causes of hardness in water and distinguish between hard a water by	nd soft
		their action with soaptheir effect on the hot water system in a house.	[6 QER]
	·····		
	·····		
	·····		
	(ii)	Explain one health benefit of drinking hard water.	[2]
	······		

	(iii) State the advantages and disadvantages of using ion exchange to soften water. [3	Examine only
(b)	Explain why ozone is added during water treatment. [2]]
	Explain the role of microbes in the treatment of sewage	
		15
11		

Examiner only State the factors that make the production of iron from its ore so expensive. [3] (C) ------8

6. The Sun emits all of the different kinds of electromagnetic (em) radiation, but 99% of its energy is emitted in the form of visible light, ultraviolet light, and infrared rays.

(a)	All em waves transfer energy. The table below shows energy values in an incorrect	
	order. Arrange the energy values in the correct order.	[2]

Region	Energy (J) in incorrect order	Energy (J) in correct order
radio	> 2 × 10 ⁻¹⁴	
microwave	3×10^{-19} to 5×10^{-19}	
visible	2×10^{-17} to 2×10^{-14}	
X-ray	2×10^{-24} to 2×10^{-22}	
gamma ray	< 2 × 10 ⁻²⁴	

(b) Photographs of the Sun are shown below. One is a visible light image and the others are ultraviolet (UV) images.

The wavelengths used to take the UV images are as follows:

UV1 = 30.4 nm UV2 = 25.3 nm UV3 = 19.5 nm

(i) State which image is taken with the lowest frequency UV light.

[1]

Examiner only

.....

Examiner only Radiation from the Sun is the source of energy for most ecosystems. (ii) Producer Primary Secondary Тор Tertiary consumer consumer consumer consumer Explain how this energy is captured in the food chain shown and why there is a loss of energy at each stage of the chain. [3] As each consumer is killed by its predator for food, uneaten parts will decay (iii) releasing nitrates into the soil. Explain how plants use the nitrates in the soil. [2] 14 **END OF PAPER**

BLANK PAGE

17

PLEASE DO NOT WRITE ON THIS PAGE

ion ∋r	Additional page, if required. Write the question number(s) in the left-hand margin.					
		1				
		·				
		L				

(;

© WJEC CBAC Ltd.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.						
		1					
		·					
		1					

0	4 Helium 2	20 Neon 10	40 Ar Argon 18	84 Krypton 36	131 Xe Xenon 54	222 Rn Radon 86	
~		19 F Fluorine 9	35.5 CI Chlorine 17	80 Br 35	127 lodine 53	210 At Astatine 85	
9		16 O Oxygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 PO 84	
Ŋ		14 N Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	
4		12 C Carbon 6	28 Silicon 14	73 Germanium 32	119 Sn 50	207 Pb Lead 82	
ы		11 B 5	27 Al Aluminium 13	70 Ga 31	115 In Indium 49	204 TI Thallium 81	
щ				65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80	
TABL				63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIOI				59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
E PE up	E.]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
TH Gro	Hydroge			55 Mn Manganese 25	99 Tc Technetium	186 Re Rhenium 75	
				52 Cr Chromium 24	96 MO Molybdenum 42	184 W Tungsten 74	
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
				48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
				45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89
3		9 Be Beryllium	24 Mg 12 12	40 Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Radium 88
~		7 Li Lithium 3	23 Na Sodium	39 K Potassium 19	86 Rb 37 37	133 CS Caesium 55	223 Fr Francium 87
20	<u>ا</u> م			(34401)A0-1)	<u>.</u>		<u> </u>

 relative atomic mass atomic number Symbol Name Z