First name(s)

Centre Number

0

GCSE

3440U10-1

WEDNESDAY, 15 JUNE 2022 – MORNING

APPLIED SCIENCE (Single Award) UNIT 1: Science in the Modern World

FOUNDATION TIER

1 hour 30 minutes

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	4					
2.	15					
3.	15					
4.	9					
5.	13					
6.	19					
Total	75					

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator, pencil and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question **5**(a) is a quality of extended response (QER) question where your writing skills will be assessed.

You are reminded to show all your workings. Credit is given for correct workings even when the final answer given is incorrect.

A Periodic Table is printed on page 20.

	Answer all questions.
Hard are g	water contains dissolved calcium and magnesium compounds. Calcium and magnesium roup 2 elements.
Use	he Periodic Table on page 20 to answer the following questions.
(a)	Tick (\checkmark) the box next to the correct number of protons in a magnesium nucleus. [1
	12
	24
	36
(b)	Tick (\checkmark) the box next to the correct number of particles in a calcium nucleus. The mass number of calcium is the same as the relative atomic mass. [1
	20
	40
	60
(C)	The magnesium atom has the electronic configuration 2,8,2. Tick (\checkmark) the box next to the correct electronic configuration of the calcium atom in the list below. [1
	2,2,8,8
	2,8,8,2
	8,8,2,2
(d)	Owain says calcium and magnesium are both isotopes of the same element. Explain whether you agree. [1

 (d) Radiation from the Sun is the source of energy for all living things. It can be transferred through the food chain such as the one shown below.
 Examiner only

 Image: Imag

BLANK PAGE

9

PLEASE DO NOT WRITE ON THIS PAGE

10

(3440U10-1)

11	
(ii) Use the equation	Examiner only
% efficiency = $\frac{\text{power usefully transferred}}{\text{power supplied}} \times 100$	
to calculate the efficiency of a 44 W halogen lamp that produces 2.2 W of light. [2]	
% efficiency =	
(c) An LED lamp is used to replace the halogen lamp.	
Over 50 000 hours of use, the halogen lamp uses 2300 kWh of energy while the LED lamp uses 600 kWh.	
Each 1 kWh of electricity used produces 0.35 kg of carbon dioxide.	
Use the information above to answer the following questions.	
(i) Calculate the energy saved by using an LED lamp instead of the halogen lamp. [1]	
energy saved = kWh (ii) Calculate the saving in the mass of CO ₂ emitted. [1]	
mass of CO ₂ = kg	
 (iii) The global warming potential of CO₂ is 1. Use the equation 	
equivalent mass of carbon dioxide = mass of gas $ imes$ global warming potential of the gas	
to calculate the reduction in the carbon footprint caused by changing one lamp. [1]	
equivalent mass of carbon dioxide = kgCO2eq	9

art of house	Type of insulation	Cost of insulation (£)	Energy lost per second from a house at a temperature of 20°C (J/s)
avity walls	none		670
cavity walls	foam filled	1300	210
windows	single glazed	1400	460
WINDOWS	double glazed	2600	310
loft	none		830
IOIT	fibre glass	800	250
			[6 QER]

				Examiner
(b)	John only h	has b nas ol	oought a house which does not have any loft insulation or cavity wall filling. Id single glazed windows.	It
	He de	ecideo	d to install fibre glass in the loft and fill the cavity walls with foam insulati	on.
	Use t	he da	ta in the table to answer the following questions.	
	(i)	I.	Calculate the heat energy saved per second because of these changes.	[3]
			heat energy saved per second =	J/s
		II.	Use the answer above to state the power saving to the home in watts.	[1]
			power saving =	W
	(ii)	I.	Calculate the total cost of installing both types of insulation.	[1]
			cost = £	
		II.	After installing the insulation, the fuel bill drops by £150 per year. Calcula the payback time.	te [2]
			payback time =	ars
				13

(a) Goo The A a follo	od river water qua table below show nd B , found in rive wing ions:	lity is needed to su vs the results of tea er water. The comp	upport fish, vegetation, wetlar sts carried out by students or bounds were known to contain	nds and birds. n two compounds, n four of the
• • • • •	sulfate calcium carbonate sodium chloride potassium iodide			
	Test used to ide	entify positive ion	Test used to identify	negative ion
Compound	Test using solid	Result	Test using solution Result	
Α	Flame test	Lilac flame	Add dilute nitric acid followed by silver nitrate solution.	Yellow precipitate
В	Flame test	Brick red flame	Add dilute hydrochloric acid. Bubble gas through limewater.	Fizzing and limewater turns milky
Use	the information ir	n the table above t	o identify compounds A and	B. [4
	Compound A:			

(3440U10-1)

(b) Colour test strips can also be used to identify pollutants in water. They can also provide other information.

Ideal water quality in swimming pools and hot tubs is essential to prevent harm to people using them.

The colour test strip below has been produced from a swimming pool water sample. It is alongside a key.

Turn over.

Examiner only (c) Colorimetry is a method of determining the concentration of a substance in a solution by measuring the absorption of light. The instrument which is used to make these measurements is called a colorimeter. The diagram below shows how a colorimeter works.

Light is passed through a filter to select the most appropriate wavelength of light, some of which is then absorbed by the solution. The amount of light absorbed is measured and is called the absorbance.

A calibration graph using known concentrations of the tested solution is produced. The results of a calibration test using copper sulfate solutions of known concentrations are shown below.

Concentration (mol/dm ³)	Absorbance (units)
0.00	0.00
0.01	0.11
0.02	0.22
0.05	0.55
0.06	0.66
0.08	0.88

- (i) Use the data to plot a graph on the grid opposite and draw a suitable line. [4]
- (ii) Describe the relationship between absorbance and the concentration of the solution. [2]

 (iii) A copper sulfate solution of unknown concentration was tested in the colorimeter and the absorbance was found to be 0.35 units. Use your graph to find the concentration of the solution.

concentration = mol/dm³

Examiner only

The filter used in the colorimeter is chosen to select the band of wavelengths which are most strongly absorbed by the coloured solution. When testing copper sulfate solution a yellow filter is used.

Wavelength band (nm)	Colour of the solution	Colour of the filter
400–435	violet	yellowish-green
435–480	blue	yellow
500–560	green	purple
580–595	yellow	blue
595–610	orange/brown	greenish-blue
610–750	red	bluish-green

 Iodine dissolved in potassium iodide solution is yellow at low concentration and brown at higher concentrations. Explain how you would change the 			
	experiment to find the unknown concentration of iodine.	[3]	
•••••			
•••••			
•••••			
·····			
•••••			
II.	Zinc sulfate solution is colourless. Explain whether the concentration of a zinc sulfate solution can be found by using coloured filters.	i [2]	
•••••			
.			
			19
	END OF PAPER		
]	

(iv)

Question number	Additional page, if required. Write the guestion number(s) in the left-hand margin.	Examin only
	l	

0	4 Helium 2	20 Neon 10	40 Ar Argon 18	84 Kr Krypton 36	131 Xe Xenon 54	222 Rn Radon 86	
~		19 F Fluorine 9	35.5 Cl Chlorine	80 Br Bromine 35	127 lodine 53	210 At Astatine 85	
Q		16 O Oxygen 8	32 S Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Po 84	
Ŋ		14 Nitrogen 7	31 Phosphorus 15	75 As Arsenic 33	122 Sb 51	209 Bi Bismuth 83	
4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82	
r		11 B 5	27 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	
щ				65 Zn 30	112 Cadmium 48	201 Hg Mercury 80	
LABL				63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
DIC				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIO				59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium	
Ш Д Д Д	Ę]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
TH Gro	Hydroge			55 Mn Manganese 25	99 TC Technetium 43	186 Re Rhenium 75	
				52 Cr Chromium 24	96 Molybdenum 42	184 W Tungsten 74	
				51 V Vanadium 23	93 Nabium 41	181 Ta Tantalum 73	
				48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
				45 Sc Scandium 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89
2		9 Be Beryllium	24 Mg 12	40 Ca Calcium 20	88 Sr Strontium 38	137 Ba Barium 56	226 Radium 88
~		7 Li Lithium 3	23 Na Sodium	39 X Potassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87
20	¢	WJEC CBAC Lt	td.	(3440U10-1)	1	1	1

relative atomic mass atomic number A_r Symbol Name Z ١