Surname	Centre Number	Candidate Number
Other Names		0

GCSE

3440UB0-1

APPLIED SCIENCE (Single Award) UNIT 2: Science to Support our Lifestyles

HIGHER TIER

TUESDAY, 14 MAY 2019 - AFTERNOON

1 hour 30 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	19			
2.	6			
3.	8			
4.	6			
5.	10			
6.	8			
7.	9			
8.	9			
Total	75			

ADDITIONAL MATERIALS

A calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 4 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on page 20 of this examination paper.

3440UB01 01

Answer all questions.

- **1.** Food manufacturers are required to measure the amount of energy contained in their food products.
 - (a) A cereal bar has the following information on its label.

	Per 100 g	Per cereal bar	RDA
Energy (kJ)	1966	787	8400

(i) Calculate the percentage of the recommended daily allowance (RDA) provided by **one** cereal bar. Give your answer to 2 significant figures. [2]

	Percentage =%
(ii)	Calculate the mass in grams of one cereal bar. [2]
	Mass = g
(iii)	Give a reason for not using the value for energy per cereal bar when comparing different brands. [1]
(iv)	Explain why the Government is concerned about constantly exceeding the RDA for energy. [3]
.	
•••••	
••••••	
.	

3440UB01 03

Examiner only

(c) The student obtained the following results.

Type of food	Mass of water (g)	Mass of food burned (g)	Temperature at start (°C)	Temperature at end (°C)	Temperature increase (°C)	Energy released (J)	Energy released per gram (J/g)
cheese biscuit	20	3.0	20	56	36	2268	756
corn snack	20	0.5	21	36	15		1848
digestive biscuit	20	4.0	20	93	73	1636	409
cereal bar	20	4.0	22	48			

- (i) How would the student make sure the results are reproducible? [1]
- (ii) Calculate the energy released by the corn snack. Write this value in the table.
 [1] Space for working
- (iii) Use the information in the table and the equation:

Energy released per gram (1/g) -	mass of water (g) \times temperature increase (°C) \times 4.2	
Energy released per gram (J/g) -	mass of food sample (g)	
to calculate the energy	released per gram for the cereal bar.	[3]

Energy released per gram = J/g

(iv)	The student suggests that a 30g packet of corn snacks contains half the energy o four digestive biscuits of total mass 60g.	Examiner only
	Explain whether the student is correct. [3] Space for working	
		19

3440UB01 05

Examiner only Rugby players are prone to knee injuries, some of which lead to long-term pain through osteoarthritis. 2. Describe how the synovial membrane helps to maintain a healthy knee joint. [2] (a) The diagram below shows a knee joint damaged by osteoarthritis. (b) destruction of cartilage ligament synovial fluid synovial membrane Explain what has happened to cause pain in the joint. [4] 6

3. Cardiff University has developed a drug called INX-189 that treats the liver disease, hepatitis C. The World Health Organisation estimates 170 million people are carriers of the hepatitis C virus worldwide. More than 350000 people die from hepatitis-related illnesses every year. In initial animal trials the drug is described as 'promising and needs to progress to full clinical trials'. Discuss the ethics of animal testing. [2] (a) In a double-blind clinical trial for INX-189, 30000 patients in several countries were (b) randomly divided into two groups. Describe what is meant by a double-blind trial. [2] (i) (ii) Suggest two reasons for carrying out the trial with a large number of people from several countries. [2] (C) The World Health Organisation monitors the number of cases of different diseases per

7

(c) The World Health Organisation monitors the number of cases of different diseases per 100000 people worldwide. The world's population is 7.5 billion (7.5×10^9) . Calculate the number of hepatitis C carriers per 100 000 people. [2]

Number of hepatitis C carriers per 100000 =

3440UB01 07

Examiner

4.	Hospitals started to introduce control measures against MRSA in 2005.	Examiner only
	Measles is a disease which was common before 1965, but is now very rare.	
	Describe the methods used to control the spread of MRSA and measles. Account for the differences in these methods. [6 QER]	

BLANK PAGE

5. Nuclear fission reactors are designed with safety features to prevent nuclear accidents. However in Chernobyl in 1986, during testing, an accident caused a meltdown of the nuclear reactor.

The diagram below shows one possible chain reaction for uranium-235.

(i) Complete the balanced nuclear equation for the fission reaction shown in the diagram. [2]

 $^{235}_{92}$ U + $^{1}_{0}$ n $\rightarrow ~^{90}_{36}$ Kr + _____

(ii) **Complete** the table below.

(a)

Neutron generation	Number of neutrons released
1 st	2
2 nd	4
3 rd	8
4 th	16
5 th	32
10 th	

© WJEC CBAC Ltd.

[1]

Examiner

Examiner only Explain how an uncontrolled chain reaction could result in a reactor meltdown. (b) [2] The graphs below show how the energy released in a nuclear reactor changes when the (C) control rods are in 3 different positions. Α В С Energy released from fission reactions Energy released from fission reactions Energy released from fission reactions 0 L 0 0 └─ 0 0 L 0 Time Time Time Explain the difference in energy production in graphs **A**, **B** and **C** in terms of the relative positions of the control rods. [5] 10

Examiner Doctors can use radioisotopes to treat lung cancer by internal radiotherapy and external 6. radiotherapy. External radiotherapy uses a radioisotope outside the body. The radiation it emits is targeted at the tumour. During internal radiotherapy a radioisotope is inserted into the tumour. Strontium-90 is a beta source which has a half-life of 29 years. Explain whether you (a) would recommend this radioisotope for use in: (i) external radiotherapy. [2] (ii) internal radiotherapy. [2]

only

(b)

13

Region	External dose (units)	Internal dose (units)
tissue surrounding tumour	12	4
tumour	20	20

The following results were obtained using the two methods on one type of lung cancer.

	External	Internal
% of patients who survived for at least 5 years after treatment	60	61
% of patients who developed other tumours in the lung within 5 years of treatment	52	35

A patient was diagnosed with a lung tumour. Use the data in the tables to compare the effectiveness of both types of radiotherapy to treat the tumour. [4]

••••••

7. A technician carries out an investigation to find how the rate of decomposition of hydrogen peroxide (H_2O_2) changes with temperature.

She controlled the following variables:

- volume and concentration of hydrogen peroxide
- mass of lead(IV) oxide catalyst

The equation for this reaction is shown below.

$$2\,H_2O_2\,\rightarrow\,2\,H_2O\,\,+\,\,O_2$$

(a) The volume of oxygen gas produced at 40 °C is shown in the table below.

Time (s)	Volume of oxygen produced (cm ³)			
0	0.0			
10	4.4			
20	7.2			
30	7.6			
40	7.6			
60	7.6			

(i) Plot the data on the grid opposite and draw a suitable line.

- (ii) Add a line to the grid to show the results you would expect if the experiment was repeated at 50 °C. [2]
- (iii) Explain in terms of particles, how the rate of reaction is affected by temperature. [2]

Examiner only

[3]

Examiner only

8.

16

(b) Use the information from the graph to explain how the acceleration of the athlete changes during the 14 seconds shown. [4]

END OF PAPER

Examiner only

9

BLANK PAGE

BLANK PAGE

Turn over.

					r	1		1
	0	4 Helium 2	20 Neon 10	40 Ar 18	84 Krypton 36	131 Xe 54	222 Rn Radon 86	
	~		19 F Bluorine 9	35.5 CI Chlorine	80 Br Bromine 35	127 lodine 53	210 At Astatine 85	
	9		16 O S 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 PO 84	
	Ŋ		14 Nitrogen 7	31 Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83	
	4		12 Carbon 6	28 Silicon 14	73 Germanium 32	119 S 0 50	207 Pb Lead 82	
	ი		11 Boron 5	27 Aluminium 13	70 Gallium 31	115 In Indium 49	204 TI Thallium 81	
щ				1	65 Zn Zinc 30	112 Cd AB 48	201 Hg Mercury 80	
ABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
					59 Nickel 28	106 Pd Palladium 46	195 Pt 78	
RIOI					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
EPE	dn	L.	7		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
Ŧ	Gro	Hydroge			55 Mn Manganese 25	99 Tc Technetium	186 Re Rhenium 75	
					52 Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
					51 Vanadium 23	93 Nb 41	181 Ta Tantalum 73	
					48 Ti 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89
	2		9 Beryllium 4	24 Mg 12	40 Ca Calcium 20	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88
	~		7 Lithium 3	23 Na Sodium	39 A A otassium 19	86 Rb Subidium 37	133 CS Caesium	223 Fr -rancium 87
								_

20

 A_r relative atomic mass Symbol Name atomic number Z atomic number

© WJEC CBAC Ltd.