Surname	Centre Number	Candidate Number
Other Names		0

GCSE

3440U20-1

APPLIED SCIENCE (Single Award) UNIT 2: Science to Support our Lifestyles

FOUNDATION TIER

TUESDAY, 14 MAY 2019 - AFTERNOON

1 hour 30 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	6				
2.	7				
3.	4				
4.	8				
5.	8				
6.	10				
7.	6				
8.	7				
9.	19				
Total	75				

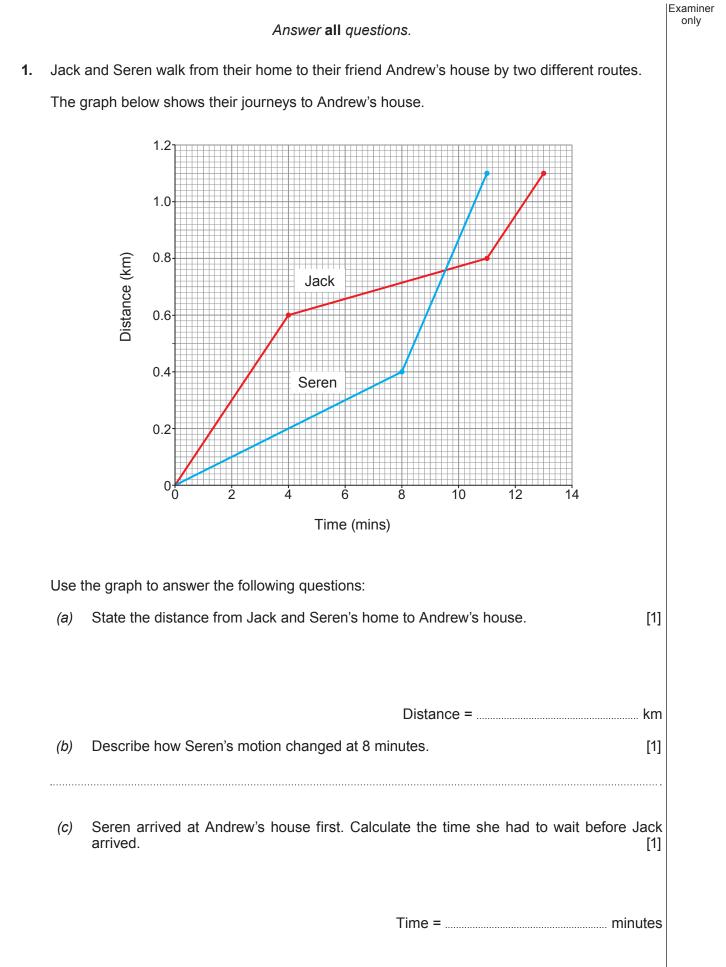
ADDITIONAL MATERIALS

A calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.


Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 6(a)(ii) is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on page 24 of this examination paper.

Examiner only <u>Underline</u> the time period when Jack was moving more slowly than Seren. (d) [1] 4 to 11 min 0 to 4 min 11 to 13 min Use the equation: (e) mean speed = $\frac{\text{total distance travelled}}{\text{total time taken}}$ to calculate Seren's mean speed for the whole journey. [2] 3440U201 03 Mean speed = km/minute 6

3

© WJEC CBAC Ltd.

2. *(a)* Cardiff University has developed a drug to treat liver disease. Following successful initial testing it has moved to full clinical trial.

4

This clinical trial will be carried out as a double-blind trial on a large number of patients using the drug and a placebo.

Join each term to the correct purpose with a straight line.

Term

Purpose

Examiner

[3]

More likely that side effects will be noticed

Double blind

Large number of patients sampled

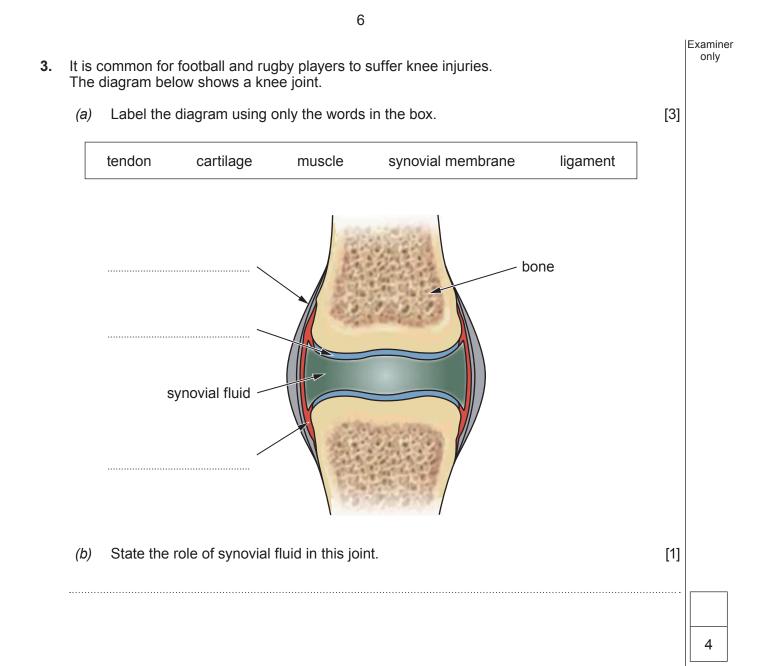
A dummy drug

Used to work out the cost of the drug

Placebo

Patients and doctors do not know who gets the drug

Prevents Anti-Drug Painkiller Addictive Side effect blood clots depressant Poisonous if more than W No No Yes No recommended dose taken Can cause weight gain Χ Weak Yes No Yes Can cause drowsiness Can lead to Υ Strong No Yes No stomach bleeds Can cause Ζ Very strong Yes No extreme No drowsiness


(i) I. State one drug that should not be given to long-distance lorry drivers. [1] II. Give one reason for your answer. [1] (ii) Jonathan has a pain in his leg caused by a blood clot. I. State one drug that could be used to treat both symptoms. [1] II. Give one reason for your answer. [1]

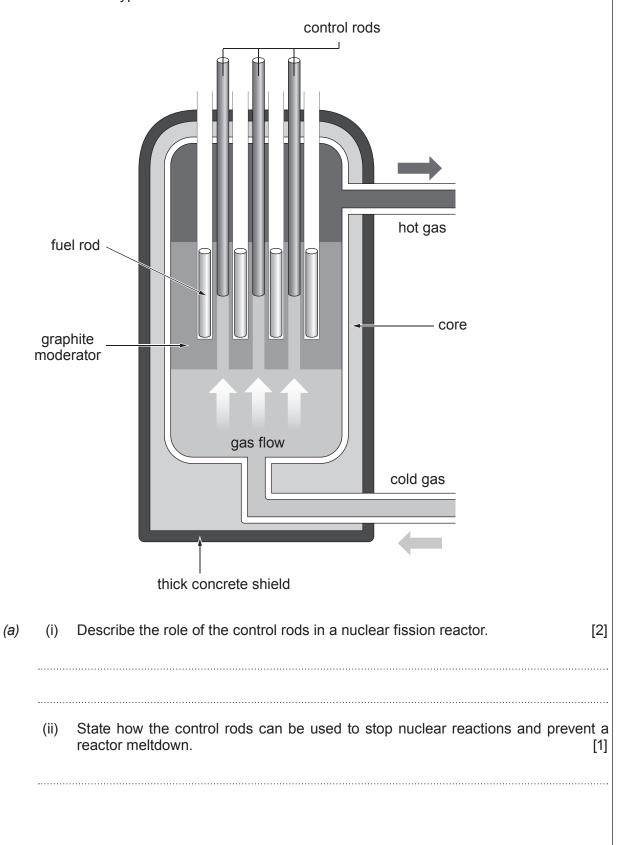
(b) The following table gives information about four other drugs, **W**, **X**, **Y** and **Z**.

Turn over.

7

3440U201 05

BLANK PAGE


7

Turn over.

4. Nuclear fission reactors are designed with safety features to prevent nuclear accidents. However in Chernobyl in 1986, during testing, an accident caused a meltdown of the nuclear reactor.

Examiner only

The structure of a typical reactor is shown below.

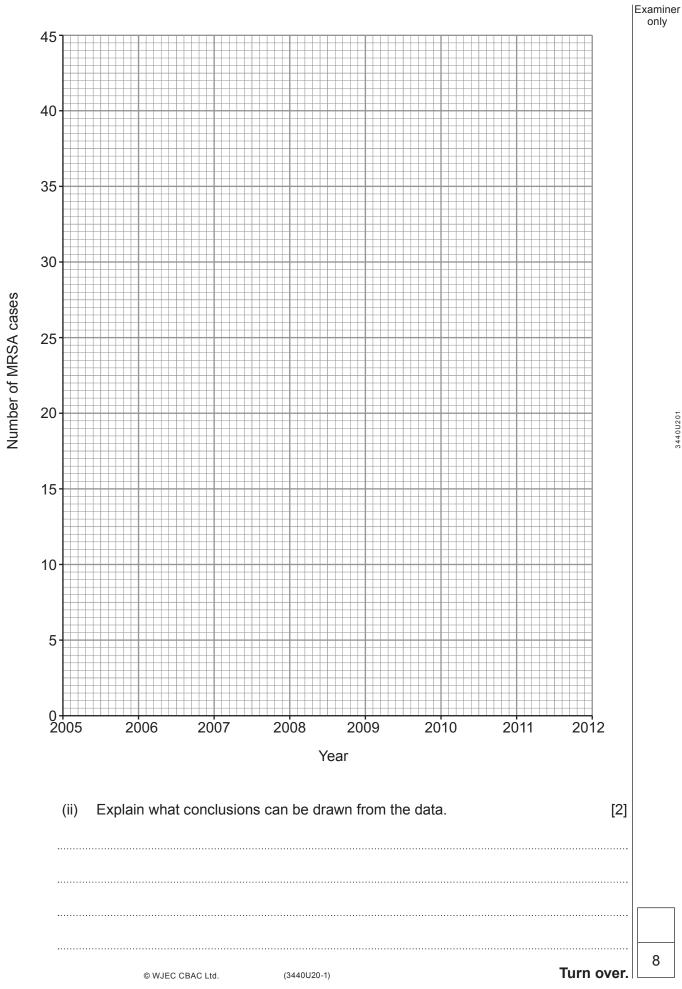
3440U201 09

[3]

[2]

8

9


 ${}^{1}_{0}n$ $_{36}$ Kr ${}^{1}_{0}n$ 235 02 ¹⁴⁴₅₆**Ba** $^{1}_{0}$ n First stage Second stage Third stage Tick (\checkmark) three statements that are true about this fission reaction. (i) The diagram shows an uncontrolled chain reaction Fission means the joining together of two particles A neutron is absorbed by the U-235 nucleus After each stage the number of neutrons doubles After stage 4 there would be 12 neutrons Neutrons split during the reaction Complete the nuclear decay equation for the fission reaction shown in the (ii) diagram. 1_0 n + ${}^{235}_{92}$ U \rightarrow ${}^{36}_{36}$ Kr + ${}^{144}_{56}$ Ba +¹_0 n Turn over. © WJEC CBAC Ltd. (3440U20-1)

(b) The diagram below shows a series of fission reactions.

- 5. MRSA is resistant to antibiotics. Hospitals started to introduce control measures against MRSA in 2005.
 (a) (i) State two reasons why the number of antibiotic-resistant bacteria such as MRSA is
 - (i) State two reasons why the number of antibiotic-resistant bacteria such as MROA is increasing.
 (ii) State one control measure used in hospitals to reduce MRSA infection.
 [1]
 - (b) The table below shows the number of cases of MRSA identified in Welsh hospitals since 2005.

Year	Number of MRSA cases
2005	45
2006	30
2007	14
2008	13
2009	6
2010	4
2011	3
2012	1

(i) Plot a graph on the grid opposite to show the number of MRSA cases between 2005 and 2012 and draw a suitable line. [3]

- **6.** The Government advises the public on lifestyle choices.
 - people should limit their weekly alcohol intake to no more than 14 units
 - people should not smoke cigarettes

A survey was carried out to monitor how the smoking and drinking habits of a randomly selected group of 5000 adults in Wales changed over a 10 year period.

The table shows the results of the survey.

	1 st year o	of survey	10 th year of survey		
	Number	% of sample	Number	% of sample	
cigarette smokers	1250	25	900	18	
people who drank more alcohol than recommended	2000	40	2000	40	

(a) (i) Suggest **two** reasons why the number of smokers changed over the 10 year period. [2]

.....

(ii) Use the data and your knowledge to explain the short-term and the long-term effects of smoking on the health of the people surveyed. [6 QER]

© WJEC CBAC Ltd.	(3440U20-1)	

	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		
(b)	Typical drinks that	contain on	e unit of a	lcohol are s	hown belov	v.		
	Н	alf a pint of beer	Small glass of wine	Small glass of sherry	One measure of a spirit			
	Alex drinks 7 pints units that Alex drin guidelines.	of beer and sta	d 6 small (te the adv	glasses of w ice you wou	ine per wee uld give her	k. Calculate t in light of the	he number of Government [2]	
								10

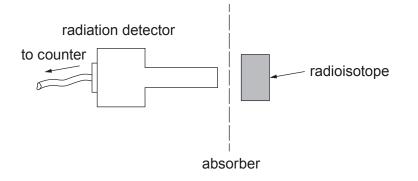
Examiner only 7. An electronics company recently recalled a range of mobile phones due to some of the batteries catching fire. This was caused by a thermal runaway reaction in the lithium-ion batteries. The diagram below shows a thermal runaway reaction. Exothermic Increase in reaction reaction rate Heat (a) Describe what is meant by a thermal runaway reaction. [2] (i) (ii) State one way that thermal runaway can be prevented. [1]

Reaction	Starting temperature (°C)	Final temperature (°C)
Α	20	79
В	50	44
С	20	-10
D	-30	-12

(b) The table below shows the temperature changes for four different reactions, A, B, C and D.

(i) Reaction **A** could result in thermal runaway.

Use the information in the table to answer the following questions.


- I. State which **other** reaction could result in thermal runaway. [1]
- II. State how you determined that this reaction was exothermic.
- (ii) Complete the following sentence by <u>underlining</u> the correct term in the brackets.

[1]

[1]

Reaction **A** is exothermic because the energy required to break bonds is (*more than / less than / the same as*) the energy released in forming bonds.

16

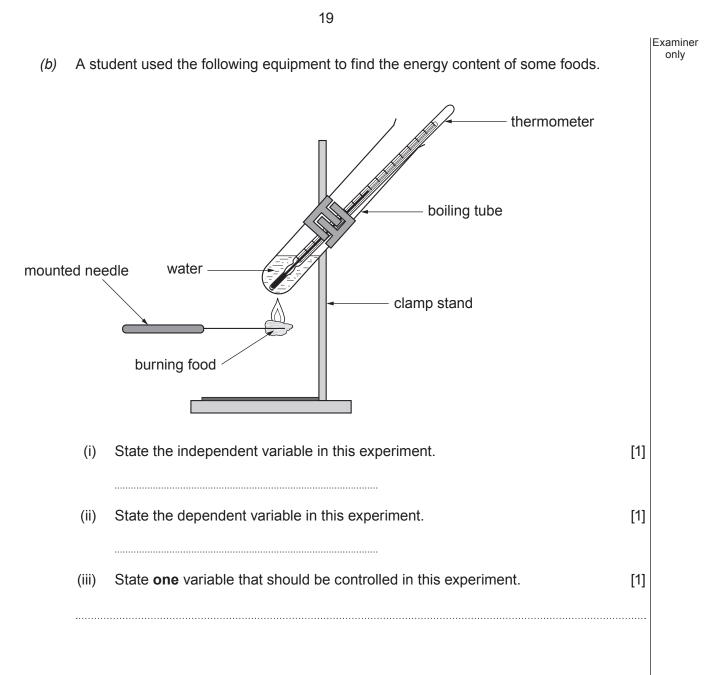
The following table shows how the count rate for four different radioisotopes is affected by different absorbers.

Radioisotope	Count rate for different absorbers (counts per second)				
	air	paper	aluminum	lead	
sulfur-35	200	199	58	25	
radium-223	200	5	5	5	
cobalt-57	250	141	140	20	
strontium-90	220	221	5	5	

Use t	he info	ormation in the table opposite to answer the questions below.	Examiner only
(a)	Estin	nate the value of the background radiation. [1]	
		counts per second	
(b)	(i)	Explain what conclusions can be drawn about the types of radiation emitted by cobalt-57. [3]	
	(ii)	It is suggested that radium-223 does not need to be stored in a metal box. Explain whether you agree with this suggestion. [3]	
	······		

© WJEC CBAC Ltd.

Examiner Food manufacturers are required to measure the amount of energy contained in their food 9. products.


only

A cereal bar has the following information on its label. (a)

	Per 100 g	Per cereal bar	RDA
Energy (kJ)	1966	787	8400

Calculate the percentage of the recommended daily allowance (RDA) provided by (i) one cereal bar. Give your answer to 2 significant figures. [2]

	Percentage =%
(ii)	Calculate the mass in grams of one cereal bar. [2]
	Mass = g
(iii)	Give a reason for not using the value for energy per cereal bar when comparing different brands. [1]
(iv)	Explain why the Government is concerned about constantly exceeding the RDA for energy. [3]
•••••	

Turn over.

(c) The student obtained the following results.

Type of food	Mass of water (g)	Mass of food burned (g)	Temperature at start (°C)	Temperature at end (°C)	Temperature increase (°C)	Energy released (J)	Energy released per gram (J/g)
cheese biscuit	20	3.0	20	56	36	2268	756
corn snack	20	0.5	21	36	15		1848
digestive biscuit	20	4.0	20	93	73	1636	409
cereal bar	20	4.0	22	48			

- (i) How would the student make sure the results are reproducible? [1]
- (ii) Calculate the energy released by the corn snack. Write this value in the table.
 [1] Space for working
- (iii) Use the information in the table and the equation:

Energy released per gram (J/g) =	mass of water (g) \times temperature increase (°C) \times 4.2			
	mass of food sample (g)			
to calculate the energy released per gram for the cereal bar.				

Energy released per gram = J/g

(iv)	The student suggests that a 30g packet of corn snacks contains half the energy of four digestive biscuits of total mass 60g.					
	Explain whether the student is correct. [3] Space for working					

END OF PAPER

(3440U20-1)

BLANK PAGE

BLANK PAGE

23

Turn over.

								1
	0	⁴ Helium	20 Neon 10	40 Ar 18	84 Kr Krypton 36	131 Xenon 54	222 Rn Radon 86	
	~		19 F Fluorine 9	35.5 CI Chlorine	80 Br 35	127 lodine 53	210 At Astatine 85	
	9		16 O Sygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Po 84	
	2		14 N Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83	
	4		12 C Carbon 6	28 Silicon 14	73 Germanium 32	119 Sn 50	207 Pb Lead 82	
	ო		11 B 5	27 Al Aluminium 13	70 Ga 31	115 In Indium 49	204 TI Thallium 81	
щ					65 Zn Zinc 30	112 Cdd 48	201 Hg Mercury 80	
'ABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIOI					⁵⁹ Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
HE PERIODIC TABLE	dno.	ue]		56 Fe Iron 26	101 Ru Ruthenium 44	190 Osmium 76	Key
Ħ	Gro	Hydrogen			55 Mn Manganese 25	99 TC Technetium	186 Re Rhenium 75	
					52 Cr Chromium 24	96 MO Molybdenum 42	184 W Tungsten 74	
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
					48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
					45 Sc Scandium 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89
	3		9 Be 4	24 Mg 12 12	40 Ca Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88
	-		7 Li Lithium 3	23 Na Sodium	39 A Potassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87
						1	I	

 A_{r} relative atomic mass Symbol Name atomic number Z atomic number