Surname	\$
---------	----

Centre Number

Other Names

GCSE – NEW

3440U10-1

S18-3440U10-1

APPLIED SCIENCE (Single Award) UNIT 1: Science in the Modern World

FOUNDATION TIER

MONDAY, 11 JUNE 2018 – MORNING

1 hour 30 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	5				
2.	3				
3.	11				
4.	11				
5.	10				
6.	9				
7.	7				
8.	19				
Total	75				

ADDITIONAL MATERIALS

In addition to this paper you will require, a calculator, pencil and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 6(b) is a quality of extended response (QER) question where your writing skills will be assessed.

You are reminded to show all your workings. Credit is given for correct workings even when the final answer given is incorrect.

A periodic table is printed on page 20.

				Ansı	wer all questi	ons.			Examiner only
1.	Chen	nical c	companies prep	pare compour	nds in their fa	ctories.			
	(a)	Com	plete the gene	ral word equa	ations for the	reactions b	pelow.	[3]	
		acid	+ metal			+			
		acid	+ metal oxide			+			
	(b)	On a com an e	an industrial so pounds can be lectric heater w	cale, large qu collected. Th vith a power c	uantities of so his is an expe of 15 kW is use	olution nee nsive part ed for 7 ho	ed to be evaporated so of the process. During urs.	o that dry one day ,	
		(i)	Use the equa	tion:					
				units used	= power (kW)) $ imes$ time (h)			
			to calculate th	ne number of	units used in	one day.		[1]	
							Units used =	kWh	
		(ii)	Use your ans	wer in (i) and	the equation	:			
			t	otal cost = co	ost of one unit	t $ imes$ units us	ed		
			to calculate th	ne cost of usi	ng the heater	for one da	y.	[1]	
			One unit of el	ectricity cost	s 20 p.				
							Cost =	n	
							0031	P	
									5

- Examiner only
- 2. Grey Treefrogs (*Hyla versicolor*) and Green Treefrogs (*Hyla cinerea*) are found in the United States of America. Grey Treefrogs prefer wooded areas while Green Treefrogs prefer more open wetland areas with leafy vegetation. Snakes and birds are predators of the two types of frog.

3

The photograph shows Grey and Green Treefrogs on the bark of a tree.

The distribution of the different types of Treefrog is due to natural selection. The process of natural selection is described by the statements below **but not in the correct order**.

Number	Statement
1	A Green Treefrog on the bark of a tree is easier to see
2	The number of Green Treefrogs decrease
3	Fewer Green Treefrogs have offspring
4	Less competition for Grey Treefrogs and fewer are eaten so their numbers increase
5	Green Treefrogs are more likely to be eaten by predators as they are not camouflaged

Sort the statements into the correct order by placing the numbers in the boxes below. *One has been completed for you.*

[3]

- 3. Theories about the origin of the Universe have changed over time. The Steady State theory of the Universe was widely accepted until the mid-20th century. It is now rejected by most astronomers.
 - (a) According to the Steady State theory the Universe always looks the same. State what this theory suggests happens as galaxies move further apart. [1]
 - (b) An absorption spectrum from a star has a pattern of black lines on a coloured background.

wavelength	(nm)) ——•
------------	------	-------

The boxes on the left list features of the spectrum. The boxes on the right list the causes of these features.

.....

(i) **Draw a line** from each feature to its cause.

[3]

Examiner only

[1]

[3]

- (c) The absorption spectra are observed using visible light. Visible light is one part of the electromagnetic (em) spectrum.
 - (i) Choose words from the box to complete the em spectrum shown below.

microwaves sound waves infra-red waves X-rays cosmic rays

gamma rays		ultraviolet	visible light			radio waves
---------------	--	-------------	------------------	--	--	----------------

(ii) Complete the sentences below by underlining the correct term in each of the brackets. [3]

Ultraviolet light travels (slower than / at the same speed as / faster than) radio waves in a vacuum.

Ultraviolet light has wavelengths that are (shorter than / the same size as / longer than) radio waves.

Ultraviolet light has frequencies (lower than / the same as / higher than) radio waves.

11

3440U101 05

- **4.** Electricians need to understand the differences between series and parallel circuits and how they behave.
 - (a) (i) Add a variable resistor to the series circuit below which can act as a dimmer to control the brightness of the lamps. [1]

(ii) Draw a circuit diagram to show two lamps connected in parallel to a battery. [1]

(b)	Tick (\checkmark) the boxes next to the three correct statements about these circuits.	[3]
	Connecting lamps in parallel instead of in series does not change the current	
	As current passes through each lamp in series it gets smaller	
	The voltage across each lamp in parallel is the same	
	Connecting extra lamps in series decreases the current	
	The current through the battery in the parallel circuit is the sum of the currents through each lamp	
	The voltage across each lamp in series is the same as the battery voltage	

only (C) A series circuit is set up using a battery and two lamps. The battery voltage is 6 V and each lamp has a resistance of 12 Ω . (i) Use the equation: $R = R_{1} + R_{2}$ to calculate the total resistance (R) of the two lamps. [1] *R* =Ω (ii) Use the equation: current = $\frac{\text{voltage}}{\text{resistance}}$ to calculate the current in this series circuit. [2] Current = A It is suggested that connecting two 12 Ω lamps **in parallel** causes the circuit resistance to be half as much as when there is only one 12 Ω lamp in the circuit. (d) Use the equation: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ to explain whether this statement is true. [3] 11

7

(3440U10-1)

Examiner

3440U101 07 **5.** Natural Resources Wales is responsible for managing and monitoring water quality in Wales.

The number of organisms present in water is one indicator of pollution levels. The feeding relationships in a healthy river are given in the table below.

Food source	Eaten by		
pondweed	tadpole insect		
algae	tadpole insect		
insect	stickleback perch frog		
tadpole	perch		
stickleback	perch		
frog	heron otter pike		
perch	heron otter pike		

(a) Use the information above to complete the food web below.

only

Examiner

[4]

|Examiner only Name the source of energy for the food web. (b) (i) [1] Name one primary consumer in the food web. [1] (ii) (iii) Name **one** herbivore in the food web. [1] (iv) Name one carnivore that competes with herons. [1] It is suggested that if all the frogs died from a disease then the number of perch (v) would not be affected because they do not feed on frogs. [2] Explain whether you agree with this statement. 3440U101 09

- 6. Population growth adds to pressure on the environment and an increasing demand on natural resources.
 - (a) Aluminium is expensive to produce. It is a very reactive metal and cannot be extracted by reducing with carbon. It is therefore extracted using electrolysis from aluminium oxide.

The diagram below shows how electrolysis of aluminium oxide is carried out.

Turn over.

© WJEC CBAC Ltd.

- **7.** A hot spring is formed when geothermally heated groundwater rises from the Earth's crust. There are thermal springs in many locations all over the world. Taffs Well spring is the only thermal spring in Wales. The temperature of water at Taffs Well spring is **20** °C. This is 10 °C warmer than the groundwater temperature in Wales.
 - (a) The concentration of dissolved compounds in spring water depends on temperature. The solubility of different compounds, **A**, **B**, **C** or **D**, in water at different temperatures is shown in the graph below.

Use the information in the graph above to answer the following questions.

- (i) State which compound is least soluble in the Taffs Well spring. [1]
- State which compound is more soluble in groundwater in Wales than in the Taffs Well spring water. [1]
- (iii) State which compound shows the largest change in solubility from 0 °C to 100 °C.

[1]

[1]

(iv) A 100g sample of water at 30 °C is found to contain 20g of compound C. State why this is not a saturated solution. (b) Describe an experiment to measure the solubility of sodium chloride in water. [3]

7

BLANK PAGE

8. To get the greatest output from solar panels, they need to point in the direction that captures the most sun.

The Northern Alberta Institute of Technology (NAIT) in Canada has designed a solar photovoltaic (PV) array consisting of six pairs of solar PV panels. They provide installers with information about how tilt angles and snow cover affects electrical output.

After snowfall, the left hand side of the system is cleared of snow as shown below.

No snow cover

Points of interest from 2013-2014

- highest single panel output energy for one day = 1.82 kWh
- highest array output energy for one month = 442 kWh

A group of students investigate how the power output from a solar PV cell depends on its tilt angle. The manufacturer of the solar cells makes the following claims.

maximum power output = 4 W performance = 60% area = 0.01 m²

The results of their investigation are shown below.

Solar cell tilt angle (degrees)	Output voltage (V)	Output current (A)	Actual power output (W)
90	0.66	1.30	0.86
75	0.80	1.60	1.28
60	0.84	1.70	1.43
45	0.90	1.80	1.62
30	0.88	1.75	
15	0.72	1.45	1.04
0	0.58	1.15	0.67

- (a) Use the information above to answer the following questions.
 - (i) Use the equation:

power = voltage × current

to complete the table.

[2]

(3440U10-1)

(b) (i) The manufacturer's claims about its solar panels are shown below.

maximum power output = 4 W performance = 60% area = 0.01 m²

Use the table on page 16, the information above and the equation:

% performance = $\frac{\text{actual power output}}{\text{claimed maximum power output}} \times 100$

to decide whether the manufacturer's claim about the performance of the solar cell is valid. [3]

(ii) The area of PV cells on the roof of a house is 5 m².
Calculate the maximum power output based on the manufacturer's claims. [2]

Maximum power output = W

(c) Suggest how the students could extend the investigation to study the effects of snow on the PV cells.
[1]

Examiner only

Examiner only Silicon (Si) is used in the production of solar PV cells. After oxygen, silicon is the second (d) most abundant element in the Earth's crust. It is found as silica (silicon dioxide SiO_2). Silicon is produced by heating silica with carbon at a high temperature. (i) Silica is reduced by heating with carbon. State what happens to silica during reduction. [1] State in terms of electrons, what happens to the ions in silica during reduction. [1] (ii) The word equation for the reaction is given below. (iii) silicon dioxide + carbon → silicon + carbon monoxide Complete the **balanced** symbol equation below for this reaction. [2] Si + SiO_2 +

END OF PAPER

(3440U10-1)

	0	P 4 4 Blium 2	20 Ve eon 10	40 Ar rgon 18	84 Kr ypton 36	131 Xe enon 54	222 Rn adon 86		
			<u>e</u> Z	e Ar	e X	° ∼ ×	e R e		
	~		19 F Fluorir 9	35.5 CI Chlorir 17	80 Br 35	127 lodine 53	210 At Astatir 85		
	9		16 O Oxygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 PO 84		
	Ŋ		$\frac{14}{N}$ Nitrogen	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi 83		
	4		12 C Carbon 6	28 Silicon 14	73 Germanium 32	119 Sn 50	207 Pb Lead 82		
	ი		11 B 5	27 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81		
щ					65 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80		
IABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79		
DIC					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		mass
RIO					59 Co Cobalt 27	103 Rhodium 45	192 Ir Iridium 77		tive atomic
E	dnc	eu]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key	
Ē	0 D	Hydrog H			55 Mn Manganese 25	99 Tc technetium	186 Re Rhenium 75		Ar Symb Name Z - Z
					52 Chromium 24	96 MO Molybdenum 42	184 W Tungsten 74		
					51 V 23 23	93 Niobium 41	181 Ta Tantalum 73		
					48 Ti Z2	91 Zr Zirconium 40	179 Hf Hafnium 72		
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89	
	2		9 Be Beryllium	24 Mg 12	40 Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Radium 88	
	-		7 Li Lithium 3	23 Na Sodium	39 Rotassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87	