| Surname     | Centre<br>Number | Candidate<br>Number |
|-------------|------------------|---------------------|
| Other Names |                  | 0                   |
|             |                  |                     |



## GCSE – NEW

3440UA0-1

## APPLIED SCIENCE (Single Award) Unit 1: Science in the Modern World HIGHER TIER

WEDNESDAY, 14 JUNE 2017 - MORNING

1 hour 30 minutes

| For Examiner's use only |                 |  |  |  |  |
|-------------------------|-----------------|--|--|--|--|
| Question                | Mark<br>Awarded |  |  |  |  |
| 1.                      | 19              |  |  |  |  |
| 2.                      | 9               |  |  |  |  |
| 3.                      | 15              |  |  |  |  |
| 4.                      | 14              |  |  |  |  |
| 5.                      | 12              |  |  |  |  |
| 6.                      | 6               |  |  |  |  |
| Total                   | 75              |  |  |  |  |

3440UA01 01

## ADDITIONAL MATERIALS

In addition to this paper you will require a calculator, pencil and a ruler.

## INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

## **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets at the end of each question or part-question.

Question 4(a) is a quality of extended response (QER) question where your writing skills will be assessed.

You are reminded to show all your workings. Credit is given for correct workings even when the final answer given is incorrect.

A periodic table is printed on page 20.

### Answer **all** the questions in the spaces provided.

1. The table gives some information about the first four alkali metals in Group 1 of the periodic table. Use this information to answer the questions that follow.

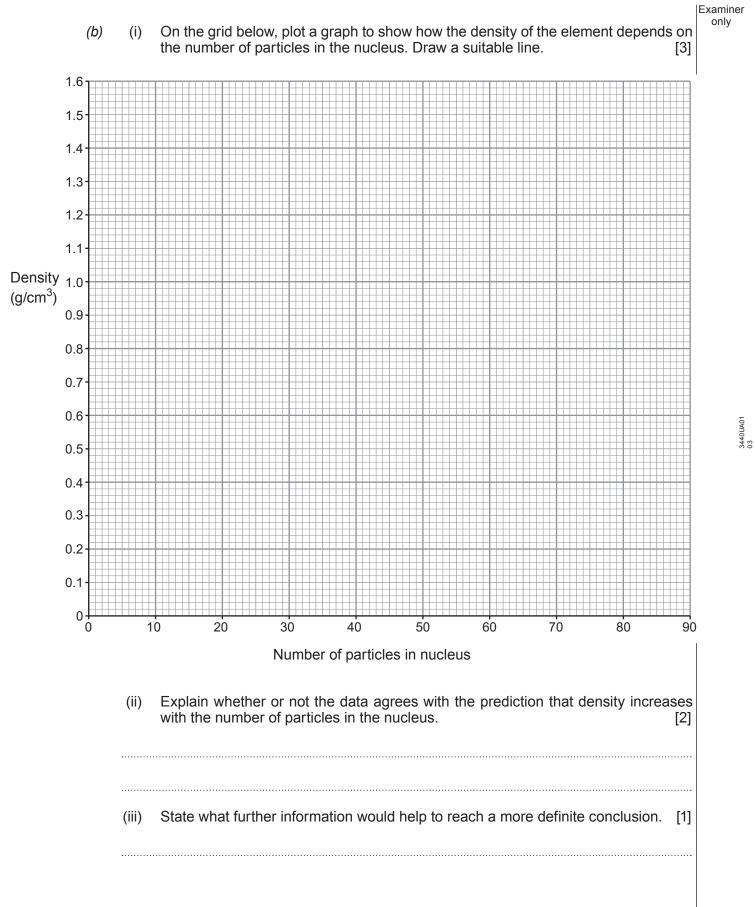
| Element   | Number of<br>particles<br>in nucleus | particles Number of Melting |     | Boiling<br>point (°C) | Density<br>(g/cm <sup>3</sup> ) |  |
|-----------|--------------------------------------|-----------------------------|-----|-----------------------|---------------------------------|--|
| lithium   | lithium 7                            |                             | 181 | 1347                  | 0.54                            |  |
| sodium    | sodium 23                            |                             | 98  | 881                   | 0.98                            |  |
| potassium | potassium 39                         |                             | 63  | 766                   | 0.86                            |  |
| rubidium  | 85                                   | 37                          | 39  | 688                   | 1.50                            |  |

(a) (i) Write down the symbol for potassium in the form  $^{A}_{Z}X$ .

[1]

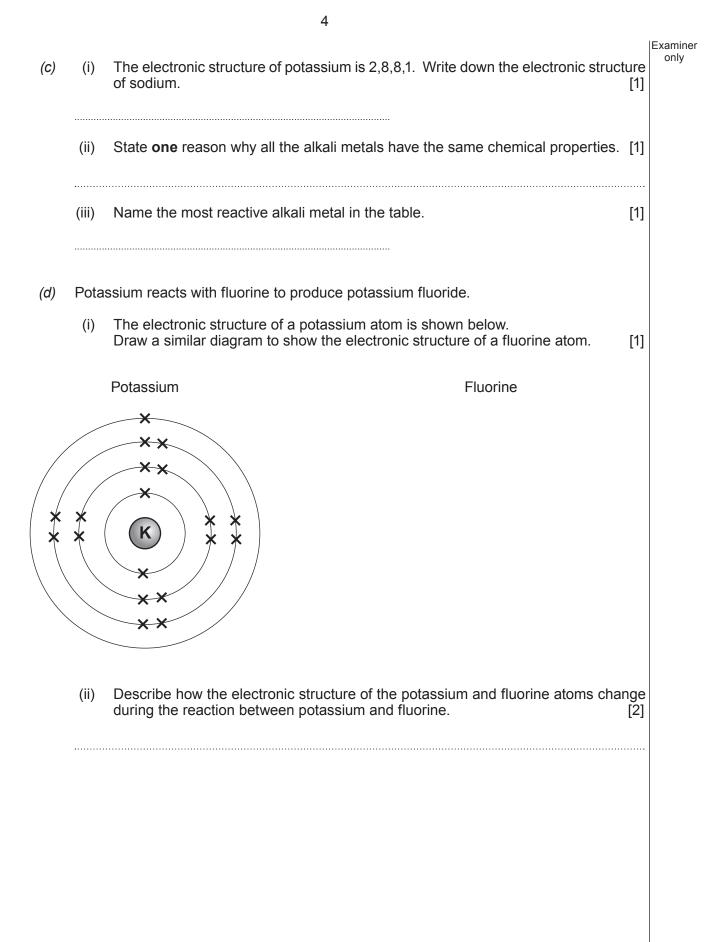
[1]

[1]


[1]

(ii) Calculate the number of neutrons in a rubidium nucleus.

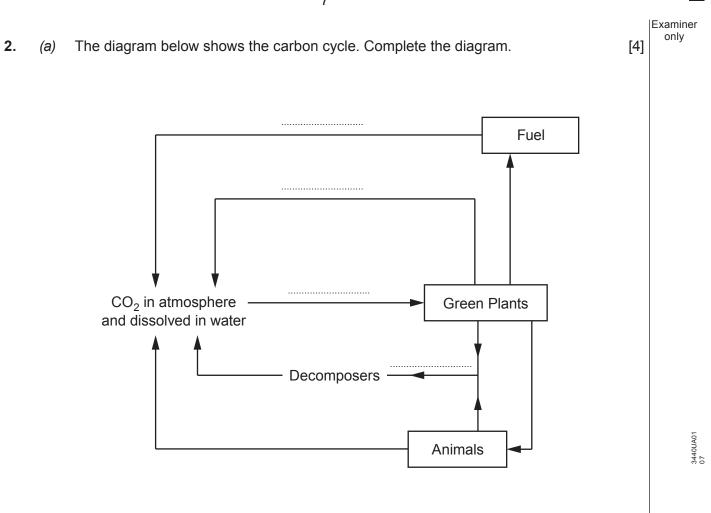
(iii) State which alkali metal is solid at 100°C.


(iv) Caesium is the next alkali metal in the series. Estimate its melting point.

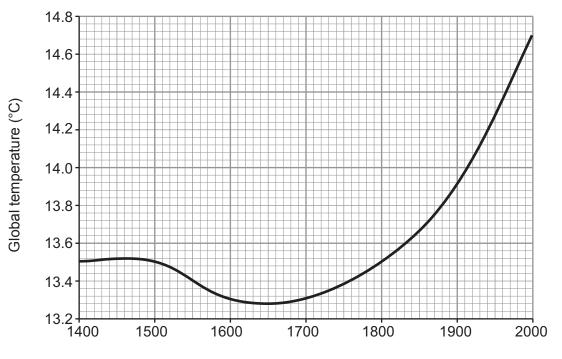
melting point = .....°C



(3440UA0-1)

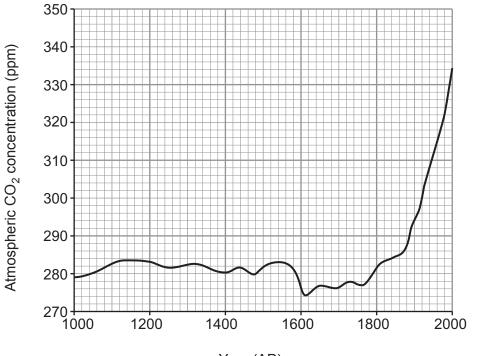

<sup>3</sup> 




|            | 5                                                                                                        |                  |
|------------|----------------------------------------------------------------------------------------------------------|------------------|
| (e)<br>(i) | Potassium is extracted from potassium fluoride by electrolysis.                                          | Examiner<br>only |
|            | potassium fluoride — potassium + fluorine                                                                |                  |
|            |                                                                                                          |                  |
| (ii)       | Potassium has been reduced in the reaction above. State what is meant by the term <b>reduction</b> . [1] |                  |
|            |                                                                                                          |                  |

3440UA01 05

# **BLANK PAGE**




Turn over.



(b) (i) The following graphs show how global temperature and atmospheric carbon dioxide concentrations have changed over time.

Year (AD)



Year (AD)

3440UA01 09

(3440UA0-1)

Examiner only

3. Solar water heating systems use energy from the Sun to heat domestic hot water. An immersion heater can be used to make the water hotter, or to provide hot water when solar energy is unavailable.

The benefits of solar water heating;

- hot water throughout the year
- reduced energy bills
- lower carbon footprint

Solar water heating systems can achieve savings on energy bills.

Householders are able to receive payments for the heat generated from a solar water heating system through the government's Renewable Heat Incentive (RHI). Payments are shown in the table below.

| Number of people per<br>household | Solar panel area (m <sup>2</sup> ) | RHI payment (£/year) |
|-----------------------------------|------------------------------------|----------------------|
| 2                                 | 2                                  | 195                  |
| 3                                 | 3                                  | 265                  |
| 4                                 | 4                                  | 335                  |
| 5                                 | 6                                  | 435                  |

*(a)* During the summer 500 W/m<sup>2</sup> of sunlight arrives on the solar panel on the roof of a 5 person household. The panel is 40% efficient. Use the equation:

% efficiency = 
$$\frac{\text{useful power output}}{\text{power input}} \times 100$$

to calculate the useful power output.

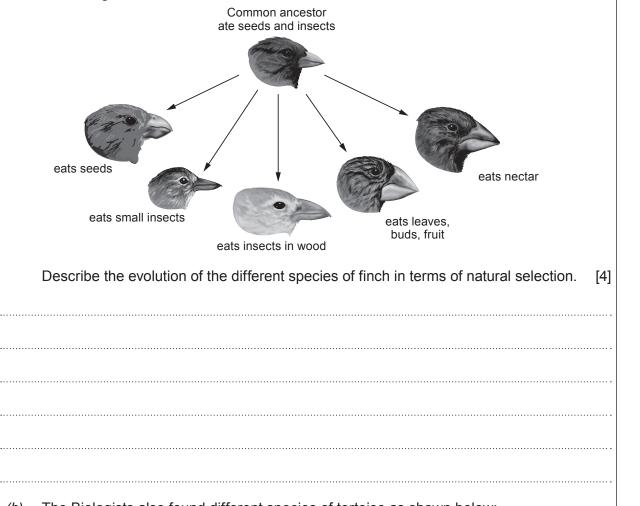
[4]

useful power output = ..... W

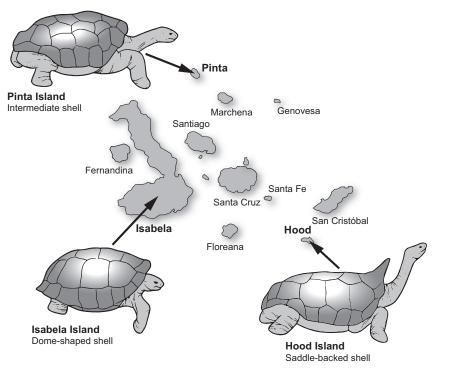
| (b) |       | re the solar panel was fitted to the roof, a 2500W immersion heater provided ho<br>or for the house. The immersion heater was switched on for 20 hours a week.                                                                    | Examiner<br>only |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|     | (i)   | Use the equations:                                                                                                                                                                                                                |                  |
|     |       | energy used (kWh) = power (kW) $\times$ time (h)                                                                                                                                                                                  |                  |
|     |       | total cost = energy used (kWh) $\times$ cost per unit (p)                                                                                                                                                                         |                  |
|     |       | to calculate the cost of using the immersion heater for 20 hours.<br>One unit of electricity costs 18p. [4]                                                                                                                       |                  |
|     |       |                                                                                                                                                                                                                                   |                  |
|     |       | total cost =                                                                                                                                                                                                                      |                  |
|     | (ii)  | After the solar panel was installed, the immersion heater was used on average fo only 15 hours a week. Calculate how much the homeowner saved in a week. [2]                                                                      |                  |
|     |       |                                                                                                                                                                                                                                   |                  |
|     |       | savings =                                                                                                                                                                                                                         |                  |
| (C) | that  | cost of installing a system for a 5 person household is £6000. The installer claims the payback time for the system will be less than 10 years. Using the information ve and the table, determine whether this claim is true. [5] | 1                |
|     |       |                                                                                                                                                                                                                                   |                  |
|     |       |                                                                                                                                                                                                                                   |                  |
|     |       |                                                                                                                                                                                                                                   |                  |
|     | ••••• |                                                                                                                                                                                                                                   |                  |
|     | ••••• |                                                                                                                                                                                                                                   |                  |
|     |       |                                                                                                                                                                                                                                   |                  |
|     |       |                                                                                                                                                                                                                                   | 15               |

4.

(a)


Describe how you would investigate the voltage-current characteristics of a filament

| lamp. | [6 QEF |
|-------|--------|
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |
|       |        |


Examiner only Sketch the graph of the results you would expect for a filament lamp on the diagram (b) below. [2] +I+V-VCompare the behaviour of a filament lamp when positive or negative voltages are applied (C) across it. [1] Explain whether the resistance of the lamp remains constant at all voltages. [2] (d) (e) Compare how the current from the power supply changes if another lamp is connected in series then in parallel with the original lamp. [3]

13

**5.** (a) Biologists found different species of finch living in the Galapagos Islands. They are shown only in the diagram below.



(b) The Biologists also found different species of tortoise as shown below:



Some parts of the Galapagos Islands have drier climates with little ground vegetation. Other parts have wetter climates with more ground vegetation.

The original ancestor of the tortoises was probably small in size and evolved into the presentday giants after its arrival in Galapagos. This is because there was no longer any need to hide from predators or competition for food. Once the tortoises spread, they evolved on their isolated islands into the different species we see today. More recently the human population on these islands has increased and animals such as goats have been introduced.

(i) Use the diagram opposite and information above to explain how you can decide what the climate is like on Isabela and Hood islands. [4]

(ii) Explain how the increasing human population and the introduction of goats will affect the tortoise population. [4]

12

Examiner only

#### Examiner only

#### Positive ion Symbol Test Observation white precipitate that dissolves as add dilute sodium hydroxide Al<sup>3+</sup> aluminium more sodium hydroxide solution solution is added pale blue precipitate that does add dilute sodium hydroxide Cu<sup>2+</sup> not dissolve as more sodium copper solution hydroxide solution is added add dilute sodium hydroxide Fe<sup>2+</sup> pale green precipitate formed iron(II) solution add dilute sodium hydroxide $\mathrm{Fe}^{\mathrm{3+}}$ iron(III) red-brown precipitate formed solution white precipitate that dissolves as add dilute sodium hydroxide Pb<sup>2+</sup> lead more sodium hydroxide solution solution is added white precipitate that does add dilute sodium hydroxide $Mg^{2+}$ not dissolve as more sodium magnesium solution hydroxide solution is added

### 6. One test for detecting metals in water is to add sodium hydroxide solution.

Tests for some negative ions are shown below.

| Negative ion                                                       | Symbol                        | Test                                                                       | Observation                  |
|--------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------|------------------------------|
| carbonate                                                          | CO <sub>3</sub> <sup>2-</sup> | add dilute hydrochloric acid                                               | bubbles of gas are given off |
| chloride                                                           | CI⁻                           | add dilute nitric acid then silver nitrate                                 | white precipitate            |
| nitrate                                                            | NO <sub>3</sub> <sup>-</sup>  | add iron(II) sulfate solution<br>followed by concentrated<br>sulfuric acid | brown ring forms             |
| sulfate                                                            | SO4 <sup>2-</sup>             | add solution of barium chloride                                            | white precipitate            |
| iodide                                                             | I_                            | add dilute nitric acid then silver nitrate                                 | yellow precipitate           |
| bromide Br <sup>-</sup> add dilute nitric acid then silver nitrate |                               | cream precipitate                                                          |                              |

### (a) Name **one** other test for identifying metals in solution.

[1]

(b) A sample of a solution from leaking drums undergoes some chemical tests. The observations are shown below.

| Test                                                  | Observation       |
|-------------------------------------------------------|-------------------|
| barium chloride solution added                        | white precipitate |
| dilute nitric acid then silver nitrate solution added | cream precipitate |
| hydrochloric acid added                               | no change         |
| sodium hydroxide solution added                       | green precipitate |

- (i) Use the tables to determine the composition of the solution. [4]
- (ii) Use the chemical symbols to write down the formula of a compound present in the solution. [1]

### **END OF PAPER**

Turn over.

(3440UA0-1)

6

Examiner only

# **BLANK PAGE**

# **BLANK PAGE**

Turn over.

| 0                         | <sup>4</sup> He <sup>4</sup> | 20<br>Neon<br>10        | 40<br>Ar<br>vrgon<br>18 | 84<br>Kr<br>Typton<br>36    | 131<br>Xe<br>enon<br>54        | 222<br>Rn<br>adon<br>86      |                             |
|---------------------------|------------------------------|-------------------------|-------------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|
| 2                         | <u>+</u>                     |                         |                         | 80<br>Br<br>35<br>80        |                                |                              |                             |
| g                         |                              |                         |                         | 79<br>Selenium Br<br>34     |                                |                              |                             |
| Ŋ                         |                              |                         |                         | 75<br>AS<br>Arsenic (       |                                |                              |                             |
| 4                         |                              | 12<br>C<br>Carbon<br>6  | 28<br>Silicon           | 73<br>Germanium<br>32       | 119<br>50 Tin<br>50            | 207<br>Pb<br>Lead<br>82      |                             |
| ო                         |                              | 11<br>B<br>5            | 27<br>Aluminium<br>13   | 70<br>Ga<br>31              | 115<br>In<br>100<br>100<br>115 | 204<br>TI<br>Thallium<br>81  |                             |
| ш                         |                              |                         |                         |                             |                                |                              |                             |
| ABL                       |                              |                         |                         | 63.5<br>Cu<br>Copper<br>29  | 108<br>Ag<br>Silver<br>47      |                              |                             |
| HE PERIODIC TABLE<br>roup |                              |                         |                         | 59<br>Nickel<br>28          | 106<br>Pd<br>Palladium<br>46   | 195<br>Pt<br>78              |                             |
| RIOI                      |                              |                         |                         | 59<br>Co<br>Cobalt<br>27    | 103<br>Rhodium<br>45           | 192<br>Ir<br>17              |                             |
| HE PE                     |                              | ]                       |                         | 56<br>Fe<br>Iron<br>26      | 101<br>Ruthenium<br>44         | 190<br>Osmium<br>76          | Key                         |
| TH<br>Gro                 | Hydrogen                     |                         |                         | 55<br>Mn<br>Manganese<br>25 | 99<br>Tc<br>Technetium         | 186<br>Re<br>Rhenium<br>75   |                             |
|                           |                              |                         |                         |                             | 96<br>Molybdenum<br>42         |                              |                             |
|                           |                              |                         |                         |                             | 93<br>Niobium<br>41            |                              |                             |
|                           |                              |                         |                         | 48<br>Ti<br>Z2              | 91<br>Zr<br>Zirconium<br>40    | 179<br>Hf<br>Hafnium<br>72   |                             |
|                           |                              |                         |                         | 45<br>Sc<br>21              | 89<br>Yttrium<br>39            | 139<br>La<br>Lanthanum<br>57 | 227<br>Actinium<br>89       |
| ъ                         |                              | 9<br>Be<br>Beryllium    | 24<br>Mg<br>12          | 40<br>Calcium<br>20         |                                | 137<br>Ba<br>Barium<br>56    |                             |
| ~                         |                              | 7<br>Li<br>Lithium<br>3 | 23<br>Na<br>Sodium      | Potassium                   | 86<br>Rb<br>Rubidium<br>37     | 133<br>CS<br>Caesium<br>55   | 223<br>Fr<br>Francium<br>87 |
|                           |                              |                         |                         | I                           | 1                              | 1                            |                             |

Ar Symbol Name Z atomic number

20